
International Journal of Pharmaceutics, 8 (1981) 159-165 
Elsevier/North-Holland Biomedical Press 

159 

Research Papers 

CALCULATIONS-OF DRUG RELEASE RATES FROM CYLINDERS - 

RICHARD H. GUY and JONATHAN HADGRA.FT * 

School of Pharmacy, Chdversity of CMlfornia, San Francisco, Wif: 94143, (U.S.A.) and *Department 
of Pharmaq, University of Nottingham, University Park, Nottingham NC7 2RD (U.K.) 

(Received February 5th 1981) 
(Accepted February 27th, 1981) 

SUMMARY 

Mathematical expressions have been derived to describe the rates of release of drugs 
from materials of cylindrical geometry. Included in the analysis is the possibility of a slow 
interfacial transfer step at the boundary of the controlled-release device. The use of 
micro-cylinders as controlled drug release devices is considered. 

INTRODUCTION 

The mathematics of diffusion from cylinders is important in the general understanding 
of implantable’controlled-release devices (Baker and Lo&dale, 1974). In this paper we 
treat the problem in a similar manner to that of the geometry of the slab (Hadgraft, 
1979) and show. the general way of solving this type of diffusion expression, The theory 
is then extended to the case where slow interfacial kinetics may be important. We show 
how such a kinetic step influences release profiles and how it may be used to control 
overall release rates. We also indicate how some simple physicochemical properties of the 
device will influence the release profiles. 

In order to produce relatively simple solutions we make several assumptions. Firstly 
that the release is only from the curved surface of the cylinder, i.e. there are no end 
effects. Secondly, the diffusion coefficients are concentrationindependent.. 

DIFFUSION FROM A SIMPLE CYLINDER 

Pick’s second law of diffusion must be expressed in terms of cylindrical co-ordinates. 
The reduced form is given in Eqn. 1 (Carslaw and Jaeger, 1959). 
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where c is the concentration, t the time, r the radius of the cylinder and D the diffusion 
coefficient. 

Solution of the equation i,s simplified by normalizing the variables as follows: 

u = c/G-j (2) 

p = r/r0 (3) 

T = Dtlr: (4) 

where c0 is the initial drug concentration in a cylinder of radius ro. Eqn. 1 may then be 
rewritten in terms of the normalized variables: 

au a2U 1 a~ 

d7=apl+p ap 
(5) 

This differential equation is solved by Laplace transformation and substitution of the 
appropriate boundary conditions. These are: 

7’ 0, u=l (6) 

PSI I U= 0 (7) 

P’O, 
( ) 

au =O 
GO 

(8) 

Condition 6 shows that initially there is a uniform drug concentration in the cylinder and 
and condition 7 that we are considering release occurring into sink conditions, Eqn. 8 
shows that there is no reservoir of drug at the centre of the device. Using these limits, 
Laplace transformation of Eqn. 5 gives: 

sii - 1 
a2v 1 aii 

=ap’+-- P aP 
(9) 

The general solution to differential equations of this type are given in terms of modified 
Bessel functions (I and K). 

-ii = Alo + BKo(&) +, f 

The coefficients A and B in this equation may be eliminated by use of the boundary con. 
ditions discussed above, We can thus obtain the concentration gradient at the edge of the 
cylinder 

The amount of drug released, Mt, at time t is given by: 

M, = -Acoro j (5), dr 
0 

(12) 
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(13) 

There is no simple inversion of this equation and we consider approximations that are 
valid for small and large values of 7. 

Short-time approximation 
For 7 < 1, I > 1 it is possible to approximate the modified Bessel functions (Abramo- 

witz and Stegun, 1970) by an asymptotic exp~sion. 

I,(z) -& 1 - o- 1) 8z + . . . where p = 4v2 

Thus, 

-l 1 
Mt=Acoro --$ % g .s 

= Ac,,r, 
2?“12 3r 
Jiz--- 8 

Mt 4P2 37 
E=F-T 

(14) 

(17) 

which is very alar to the expression given by Crank (19%). At very short times the 
second term in Eqn. 17 becomes very small and release follows the square-root of time as 
was found to be the case for the plane sheet (Hadgraft, 1979). 

Long-time approximation 
The appropriate conditions for long times is to approximate the modified Bessel func- 

tions by ascending power series (Abramowitz and Stegun, 1970). Using the appropriate 
approbations 

and 

Mt - = 1 - e;ltp(-4r) 
MU0 

119) 

As would be expected, an exponential relationship is found which is similar to the release 
profde predicted by Crank (1956) on p. 66 of his text. 

Release from a &inder with ~u1 kterfacid kinetic barn& 
When a phase boundary exists at the surface of the cylinder it is possible that slow 

interfadal transfer is the rate~~t~g step in the release process. This may be described 
in tetms of a rate con&nt, kr!, where this defines the ‘transfer of substrate from an 
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organic to an aqueous environment (Albery et al., 1974). 

K 

It is more convenient to employ dimensionless variables in the solution of the differential 
eqtiations and we define I: as follows 

K=* 
D 

(W 

We consider the cylinder to be of an organic nature surrounded by an aqueous environ- 
ment which provides sink conditions. Using the normalized variables, diffusion in the 
cylinder is given by Eqn. 5 with boundary conditions 6 and 8. Additionally the slow inter- 
facial step gives rise to the condition: 

= --KU] (20 

This condition is used to eliminate the coefficients A and B in the general solution given 
by Eqn. 10. As before B = 0 but a new value for A is obtained and 

Thus 

Mt = Acoro f1 KIi(G) 
SIe5 [d&i) + Kl&/i)] 

This expression may be inverted by making short- and long-time approximations. 
Short-time approximation: 

forr< I,s> l;I,(G)-I,(&)and 

If interracial transfer is rate-limiting, K < s and Eqn. 24 reduces to: 

MI = 
-’ AcereK 

% S2 

Mi 
<- = 2KT 

ma 

(22) 

(23) 

(24) 

(25) 

(26) 

and at very early times the device will be releasing drug with zerosrder as there will be 
little concentration depletion effect. 

It is possible to invert Eqn. 24 to give an expression for the condition when K N s. This 
is achieved by separating Eqn. 24 by partial fractions and inverting the individual compo- 
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nents. If this procedure is adopted, a more complex expression is produced: 

M, = Acere y + !_ (exp(x27) erfc(Kfi) - 1)) 
n K 

(27) 

Long-time approximation: 
for small s values corresponding to large 7, IO(&) 2: 1 and Ir(&! z&/2 (Abramowitz 
and Stegun, 1970). Substituting these values into Eqn. 23 

Mt = Ac+f + : 2K) 

Thus 

(28) 

!$=(I - exp(-2KT)) 
00 

DISCUSSION 

The initial release pattern for the simple cylinder is shown in Fig. 1. Eqn. 17 gives the 
best representation of the release profile but it is clear that for r < 0.01 a simple t1’2 rela- 
tionship is adequate, Even up to r - 0.05 the simpler relationship is correct to within 
10%. Fig. 2 shows the long.time release curve for a simple cylinder. It is a simple expo- 
nential relationship and it is apparent that most of the drug will be released by r = 1. 

When interfacial kinetics are assumed to be at least partially rate-limiting a new set of 
equations give the release profiles plotted in Figs, 3 and 4. At short times (Fig. 3) a com- 
parison is made for values of K = 1 between the simple expression given by Eqn. 26 and 
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F& 1, Short-time release profile for the simple cylinder. 
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Fig. 2. Long-time release profile for the simple cylinder. 

the more complex Eqn. 27. For values of r < 0.05 the difference between the expressions 
is less than 10%. Since the more complex expression has slight curvature, the difference 
increases with T. For further comparison the curve is shown where K + 00 and there is no 
interfacial barrier. Since Eqn. 26 is a linear function in K and T, any variation in K will 

linearly affect the gradient of the release profile. As can be seen for K < 1, the release pro- 
fde is considerably modified. 

Fig. 4 shows the effects of slow interfacial kinetics at long times. For K = 10 the 
interfacial transport is sufficiently fast that it has negligible effect. Slight deviations occur 
for K = 1 and for values of r around 1. When K becomes less than unity quite a pro- 

M,/Mw 

26K - 1 

27~ = 1 

7 

F~JJ. 3. Short-time release prch’lle from a cylinder with slow interfacial kinetics. A comparison is shown 
between Eqns. 26 and 27 and, the comparable situation when K -* -. 
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Fig. 4. Long-time release profile from a cylinder with slow interfacial kinetics. The effect of varying K 

is shown. 

nounced effect is observed and the interfacial barrier dominates the release characteris- 
tics. 

In the development of polymeric devices which have cylindrical geometry it is possible 
that slow interfacial kinetics can be usefully employed to modify the overall release 
characteristics. The barrier should not be neglected and may be utilized to produce con- 
trolled drug release which has zero-order release properties. 
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